Sexually Transmitted Infections
Summary of Guidelines

2013

HELPLINE TOLLFREE 0508 11 12 13
Sexually Transmitted Infection Education Foundation resources

**Helpline**

**HERPES**
- Tollfree 0508 11 12 13

**Website**
- www.herpes.org.nz

**Resources**

2. STI – Summary of Guidelines 2013

**Patient information pamphlets**

1. The Facts: A guide for people with Herpes Simplex
   - Includes – Genital Herpes – The Facts
   - Herpes and Relationships
   - Herpes and Pregnancy
   - Facial Herpes
2. Herpes: Myth vs Fact

**Health professionals’ resources**

2. STI – Summary of Guidelines 2013

**Patient information pamphlets**

1. Some Questions and Answers about HPV and Genital Warts
2. A Patient Guide: HPV in Perspective
3. Cervical Smears and Human Papilloma Virus Infection (HPV)
4. What everyone should know about Genital HPV (Human Papilloma Virus) Infection and the Cervical Cancer Vaccines

These resources are available through the Sexually Transmitted Infection Education Foundation

- Phone: 09 433 6526
- Fax: 09 360 2835
- Email: info@herpes.org.nz
  or: info@hpv.org.nz
  or: info@stie.org.nz

**New Zealand Sexual Health Society (NZSHS) resources**

Comprehensive Sexually Transmitted Infection (STI) Management Guidelines and Patient Information handouts are available on www.nzshs.org/guidelines.html
Guidelines for the Management of Genital HPV Infection in New Zealand

7th Edition - 2013

Produced by the Professional Advisory Board (PAB) of the New Zealand HPV Project

1st Edition 1999
2nd Edition 2001
3rd Edition 2002
4th Edition 2004
5th Edition 2007
6th Edition 2010

For a list of the Professional Advisory Board (PAB) members, refer to page 40.

© 2013 Sexually Transmitted Infection Education Foundation
ABOUT THIS DOCUMENT

This document is a consensus opinion of the Professional Advisory Board (PAB) of the New Zealand HPV Project. The PAB has representation from patients and medical and nursing bodies involved in the management of people with genital HPV and/or genital warts. A process was undertaken to evaluate contemporary international literature and develop best practice regarding the diagnosis, treatment and evaluation of patients with HPV infection/genital warts and their sex partners, in Australasia. The recommendations are based on strong evidence in the literature or reasonable suppositions and opinions of experts. The PAB works on a voluntary basis.

Commonwealth Serum Laboratories (CSL) provided an educational grant towards the publication of these guidelines, they did not participate in their development.

The guidelines’ recommendations have been rated under the following evidence-based categories:

**Grade A:** Very strong evidence
One or more properly randomised controlled clinical trials.

**Grade B:** Fairly strong evidence
One or more well-designed observational studies (i.e. non-randomised clinical trial cohort, case control or time series study; or non-controlled experimental trials).

**Grade C:** Weak evidence or firmly held opinion
Opinions of respected authorities that were based on clinical experience, descriptive studies, and/or reports of expert committees.

TABLE OF CONTENTS

3 Introduction
4 Genital Human Papilloma Virus (HPV)
4 Epidemiology of Genital HPV Infection
7 Transmission of Genital HPV Infection
8 HPV and Cancer
10 HPV Vaccines
13 Clinical Presentation and Diagnosis
14 Molecular (DNA) Diagnosis of Genital HPV Infection
16 NCSP Flow Chart Guides
18 Treatment of Genital HPV Infection and Genital Warts
24 Table 1: Treatment by site
24 Table 2: Summary of treatment options
26 Table 3: Factors that may influence the selection of treatment for warts
27 Special Situations
29 Issues in Counselling – Key Information for Patients
31 Guidelines on the Management of Anogenital HPV in Childhood
34 References
39 Clinical Presentations of Genital HPV
40 Professional Advisory Board
HUMAN PAPILLOMA VIRUS (HPV) AND ANOGENITAL CANCER

Introduction

During the late 1970s, emerging evidence indicated the wart virus may be central in the pathogenesis of cervical and other lower genital tract cancers. Since that time, developments in the field of molecular medicine, together with many large epidemiological studies, have provided convincing evidence of the causal role of high risk (Hr) HPV in cervical and many other lower genital tract, anal and oro-pharyngeal cancers. More recently, HPV vaccines have been developed and subjected to extensive field trials. These have demonstrated their safety and efficacy in preventing infection and disease caused by HPV types contained within the vaccine.

R W Jones
Chairman
Genital Human Papilloma Virus (HPV)

More than 40 genital types, subcategorised as:
- Low risk HPV (LrHPV) – not associated with pre-cancer or cancer of the lower genital tract.
- High risk HPV (HrHPV) – associated with pre-cancer and cancer of the lower genital tract.

Presents as:
- Genital warts – always due to LrHPV.
- Latent and/or subclinical (as detected on cervical smear, not visible to the naked eye) – may be either HrHPV or LrHPV.

EPIDEMIOLOGY OF GENITAL HPV INFECTION

KEY POINTS

- A common infection with a prevalence of 20% in 20-year-olds.
- Lifetime risk of HPV infection > 80%.
- The majority of infections are transient, with 80-90% clearance within 2 years.

Incidence and prevalence

HPV infection is ubiquitous, with approximately 75-80% of women being exposed to at least one HPV infection in their lifetime.¹ About 150 HPV types have been characterised. An international review reported that at any given point in time 10.5% of women worldwide are positive for HPV DNA in the cervix.² A meta analysis estimated HPV prevalence among women with normal cervical cytology using data from 78 published studies.³ The highest prevalence is in young women (20-25% around age 20) falling to 10% at age 30 and falling slightly thereafter.³ Australian studies show a HrHPV prevalence of 23.6%, with highest rates in young women (age 15-19: 44%, age 20-24: 42%, age 25-29: 34%) and falling below 10% after age 40.⁴ A small increased prevalence in women over 65 years may reflect reactivation of previously undetectable infection acquired earlier in life, new infections, or a cohort effect.⁶ Rates of HPV infection in young women are high following sexual debut. 28% after 1 year with one sexual partner increased to 49% after 36 months, and remain high with acquisition of each new partner.⁷ Studies have reported cumulative incidences of 40% or more after 3 years of follow-up.⁸

Figure 1: Estimated prevalence of genital HPV infection among men and women 1-49 years of age in the US (1994)
Factors associated with HPV prevalent infection in men include high numbers of lifetime female sex partners, the presence of male anal-sexual partners, less than 50% condom use, coexistent STIs, not being circumcised, and cigarette smoking.\textsuperscript{9,11} Reported genital prevalence of specific HPV types and their clearance in men vary widely but the seroprevalence of specific HPV antibodies are lower in men than for women of the same age.\textsuperscript{12} A consistent finding is an association with increased sexual activity and high risk HPV genotypes.

HPV types 6 and 11 have been reported in 70% to 100% of visible genital warts. However, co-infection with other HPV types is also common.\textsuperscript{13-17}

Visible genital warts range in reported prevalence from 1% in the United States\textsuperscript{15,18} to approximately 10% in a study of Scandinavian countries.\textsuperscript{19} In an Australian study on young women aged 18 to 23 years, the lifetime self-reported incidence of genital warts was 3.1%.\textsuperscript{20} In the Dunedin Multidisciplinary Health & Development Study, Dickson et al determined the self-reported cumulative incidence of genital warts. At age 21, men reported an incidence of 4.7% and women 6.9%;\textsuperscript{21} and at age 32, men reported 10.2% and women 12.2%.\textsuperscript{22}

Most HPV infection is associated with initiation of sexual activity and is transient, although in some cases HPV infection remains latent and may reactivate years later.\textsuperscript{23} There is a rapid clearance of HPV in the first 6 to 12 months, with 80 to 90% clearance by 2 years. Following this time there is a very small fraction of persistent infection that progresses to cervical intraepithelial neoplasia (CIN)-2 plus.\textsuperscript{24,25}

### Factors associated with HPV acquisition

<table>
<thead>
<tr>
<th>KEY POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Genital HPV infection is often found in people who have recently become sexually active.</td>
</tr>
<tr>
<td>• Most genital HPV infections are subclinical.</td>
</tr>
<tr>
<td>• On average, 80% of sexually active adults will have had some form of HPV infection during their lives.</td>
</tr>
<tr>
<td>• HPV infection increases in incidence in proportion to the number of sexual partners.</td>
</tr>
<tr>
<td>• For most people, infection with each HPV type is transient and clears spontaneously within the first 6 to 12 months, but in some cases HPV infection persists or remains latent and may reactivate years or decades later.</td>
</tr>
</tbody>
</table>

### Sexual activity

HPV infection is, in most cases, a sexually transmitted disease and in both men and women risk acquisition is influenced by sexual behaviour.

A population-based case-control study on men showed having increasing numbers of partners in the previous 5 years was strongly associated with incident and recurrent condyloma acuminata.\textsuperscript{26} There was some increased risk with a history of any sexually transmitted infection. A similar study on women also showed a strong association with multiple partners.\textsuperscript{26} The incidence of HPV infection was evaluated in 8800 women in the placebo arms of two randomised trials of HPV vaccine. Risk factors for genital warts included infection at baseline, acquisition of new sexual partners and a higher number of sexual partners.\textsuperscript{27} Women with 5 or more partners in the previous 5 years had a relative risk of 7.1 for incident warts and 12.8 for recurrent warts, compared to those who had 1 partner over this time period.\textsuperscript{8} Winer et al showed that in female university students a report of a new partner was predictive of incident infection as measured by DNA positivity.\textsuperscript{8} In the large WAVE III study involving women aged 18 to 25, having more than 3 lifetime partners was independently associated with HPV infection.\textsuperscript{28} In a 2007 New Zealand survey, nearly half of the 17 year olds had had sexual intercourse. The prevalence of sexual activity increased across age groups 13, 15 and 17 years old with 16.8%, 33.3% and 48.7% reporting having had sexual intercourse, respectively.\textsuperscript{29}
HPV transmission can be sustained in populations where individuals have few partners but relationships form serially or overlap briefly in time. The Jefferson High School study reported that during an 18 month period more than 50% of the students were linked through romantic and sexual relationships.30

**Men who have sex with men (MSM)**

An American study on urban HIV-negative MSM showed an overall prevalence of anal HPV infection of 57% with the most common type HpHPV-16.31 Prevalence did not vary across age groups. Anal HPV was independently associated with a history of receptive anal intercourse (odds ratio 2.0) and with more than 5 sex partners in the preceding 6 months (odds ratio 1.5). The most common site of HPV recovery in HIV-negative MSM is the anal canal.32 Anal HPV has been associated with an increased risk of HIV acquisition in MSM.33

**Oral contraception**

There is conflicting evidence that oral contraceptive use increases the risk of genital warts,26,34 however a study of 603 female university students demonstrated that use was predictive of cervical HPV DNA positivity.8 It is also possible that the use of oral contraception is a surrogate marker for other sexual behaviours.

**Smoking**

An association with cigarette smoking and cervical or penile HPV infection, as demonstrated by HPV DNA, has been shown.8,9,11,35-37 The role of smoking in genital wart acquisition is conflicting in HIV-negative individuals.19,26,34,38,39 Smoking in HIV-positive individuals is associated with the development of new external genital warts.40

**Pregnancy**

There has been variable reporting on HPV rates in pregnant versus non-pregnant women.18 This may be due to higher levels of virus being found in pregnancy, possibly due to altered immune status.

**Role of immunity**

Increased rates of HPV infection have been found in those with HIV.41 A case-control study compared renal transplant patients who were immunosuppressed with controls and found an increase in genital HPV.42

**Condom use**

See section on transmission, page 7.
TRANSMISSION OF GENITAL HPV INFECTION

**KEY POINTS**

- HPV is highly infectious and is transmitted by skin-to-skin contact.
- If one member of a stable partnership has genital HPV infection, the other is likely to be either infected or immune to that infection.
- Condoms provide limited protection against HPV infection, but their use is recommended to prevent other sexually transmitted infections.
- Because of variable latency, HPV infection may develop during a long-term relationship and does not necessarily imply infidelity.

Direct skin-to-skin contact spreads HPV infection most efficiently. The virus is not transmitted via blood or body fluid, e.g., semen. Genital forms of the virus target the mucous membranes and adjacent genital skin. One early study demonstrated that 60% of sexual partners of those with genital warts subsequently developed them as well.\(^{43}\) Using computer modelling, Barnabas et al estimated the per partner male to female transmission to be 60%.\(^ {44} \)

Transmission occurs frequently because subclinical infections are common and asymptomatic, and warty lesions often go unnoticed, particularly in areas that are not easily inspected for the presence of warts.

Sexual contact is the most common form of transmission among adults. Vertical transmission in utero is very rare\(^ {45} \) (see HPV in pregnancy section page 27). Autoinoculation may occur rarely.\(^ {46} \) It is possible, but uncommon, to transmit genital HPV infection to the mouth through oral sex.\(^ {47} \) The mouth appears to be a less hospitable environment for genital strains of HPV than the genital area.\(^ {46-51} \) While HPV DNA has been found on fomites (inanimate objects), there is no evidence to support transmission occurs.\(^ {52,53} \)

For management of HPV infection in children, see page 31.

It is generally believed, although not proven, that clinically visible warts offer the greatest possibility for transmission, and that treating warts decreases that possibility. As it is difficult to detect HPV in its latent stage, it is impossible to know whether in some cases the immune system can completely clear the virus from the body, or whether the virus remains latent at undetectable levels, capable of re-emerging if the immune system weakens.

**Latency**

The latency period of genital HPV infection is extremely variable. Often, warts will appear after 3 to 6 months, but latency periods of many months or even decades have been reported.\(^ {54} \) Evidence for such extended latency periods is seen in immunocompromised and normal patients who, despite having been sexually inactive for many years, can suddenly develop warts or cervical abnormalities. It is important to emphasise that developing genital warts during a long-term relationship does not necessarily imply infidelity.

**Condom Use**

The effectiveness of condom use in the prevention of HPV transmission is controversial. An analysis of 27 studies by Manhart et al reviewing the effectiveness of condoms in prevention of HPV disease, concluded that there was no consistent evidence that condom use reduced the risk of becoming HPV DNA positive.\(^ {55} \) In addition, there is limited evidence suggesting that condom use provides some protection against the development of genital warts and CIN-2 and CIN-3, possibly as a result of the reduction in viral load and a consequent change in the probability of disease expression.
**HPV AND CANCER**

<table>
<thead>
<tr>
<th>KEY POINTS</th>
</tr>
</thead>
</table>
| • HPV needs to be present for cancer of the cervix to develop but other factors may play a role.  
• The presence of HR-HPV increases the risk of developing cervical cancer.  
• Women who have HR-HPV need more frequent monitoring because of the increased risk.  
• Most women with HR-HPV will not develop cervical cancer and in many the HR-HPV will resolve spontaneously.  
• The presence of HR-HPV increases the risk of developing pre-cancerous states – cervical intraepithelial neoplasia (CIN).  
• HR-HPV also plays a significant role in other lower genital tract pre-cancers and cancers: (Cervical 100%), vaginal 90%, anal 80%, penile 50%, vulval 40%, head and neck 26% (oral cavity and pharynx). |

The infectious cycle of the human papilloma virus begins when infectious particles breach the epithelium of the lower anogenital tract and enter basal epithelial cells. Basal stem cells then divide and mature vertically through the epithelium without further division. The virus replicates in suprabasal/squamous cells and is released into the environment when the superficial cells desquamate. The E6 and E7 viral proteins are critical in the viral replication process and differences between these proteins in the high and low risk HPV types determine interactions with cell cycle proteins (pRb and p53), which in turn determine cellular proliferation or malignant transformation.

From the 1970s, epidemiological studies have provided increasing evidence to suggest HPV is the aetiological agent in cervical cancer. In 1995, the International Agency for Research in Cancer (IARC) stated that HPV 16 and 18 are carcinogenic, with limited evidence of the carcinogenicity of HPV 31 and 35. Since then, the IARC has demonstrated HPV DNA in 99.7% of approximately 1,000 cervical cancers from 22 countries. In addition, many vulval, vaginal, anal and penile cancers are HPV related. HPV 16 and 18 account for about 70% of all cervical cancers worldwide, with some regional variations, e.g. HPV 16 and 18 account for 77% of cases in Oceania.

HPV can infect the entire lower genital tract, but there is a predilection for CIN and cancer to occur in the immature epithelium of the ‘transformation zones’ in the cervix and anus. Intraepithelial neoplasias and cancer may be multifocal and multicentric.

While the morphological spectrum CIN-1 to 2 to 3 is useful from a cyto/histopathology perspective, it is less useful in understanding the role of HPV in carcinogenesis, since microscopic abnormalities are only seen in a minority of women with HPV DNA detected by DNA assay. From a practical perspective, e.g. natural history, CIN-1 and HPV should be viewed as similar lesions. HPV type, viral load and persistence are more important than the presence or absence of microscopic evidence of infection such as koilocytosis. Low viral load infections (e.g. detectable only by PCR) are less likely to be associated with microscopic changes and risk of subsequent pre-cancer compared with high viral load infections. The median time for clearance of prevalent infections varies from 6 months to 1 to 2 years, with 90% clearance of specific HPV types within 2 years. Persistent infection is a marker for the development of CIN-2 and 3. HPV 16 persists longer than other types, with an absolute risk of CIN-3 approaching 40% after 5 years’ persistence.

The previous view that the ‘high risk’ woman (for developing CIN-2 or 3 and cancer) was the woman with a history of an early coitarche, multiple sexual partners etc., must now be replaced by the concept that persistent HR-HPV infection is the most important risk factor.
CIN-3 must be regarded as the surrogate end point for cancer. However, CIN-2 lesions may represent severe cytological changes associated with HPV infection that are destined to regress, while others are destined to persist with risk of progression. The median age of women with CIN-3 is 27 to 30 years. However, intensive prospective follow-up of women in their early 20s has demonstrated the rapid development of CIN-2 and 3, often within a few months of incident infection. Women with cervical screen detected invasive cancer are 10 years or more older than the median age of women presenting with CIN-3. New Zealand data have demonstrated that, in women with CIN-3 managed only with small diagnostic biopsy and persistent abnormal smears, the cumulative incidence of invasive cancer of the cervix was 50%. HPV also causes a portion of vulval (40 to 50%), vaginal (60 to 65%) and anal (85%) cancers, with HPV 16 accounting for the vast majority. The immediate precursor lesions are vulval, vaginal and anal intraepithelial neoplasia (VIN, VAIN, AIN). New Zealand studies have demonstrated VIN to have a significant invasive potential in women age 30 years and over with a mean transit time to invasion of 4 years. Investigation of the role of co-factors for persistence and progression is difficult because of the ubiquitous and transient nature of HPV infection. Cigarette smoking, long-term use of hormonal contraceptives and high parity and coinfection with HIV have been consistently demonstrated as co-factors for cervical cancer.
HPV VACCINES

KEY POINTS

- Gardasil vaccine is safe and highly effective in preventing the four important HPV types – 6, 11, 16 and 18.
  - HPV 16 and 18 are associated with cervical cancer and precursor lesions, as well as some other genital pre-cancers and cancers.
  - HPV 6 and 11 cause the majority of genital warts.
- HPV immunisation (with the quadrivalent vaccine Gardasil) is part of the National Immunisation Schedule for girls as a school-based programme in Year 8 (except in the Canterbury region).
  - Girls who are not vaccinated at school can receive Gardasil from their local medical clinic.
  - Gardasil is FREE for girls and young women up to their 20th birthday.
- Bivalent vaccine Cervarix is available, but not funded in New Zealand.
- Ideally, individuals should be vaccinated prior to sexual exposure.
- Gardasil induces a higher immune response when given between 9-15 years than in women aged 16-26 years.
- To date, protection has been demonstrated to be stable for up to 10 years (limited to the length of time the vaccine has been in use) and projections suggest the primary 3-dose course of Gardasil offers lifelong protection.
- The vaccine shows effectiveness even with a previous history of CIN or genital warts through its ability to prevent infection with other HPV serotypes.
- The vaccine is also indicated for males aged between 9-26 years, but is not funded. Currently a funding submission is being considered to have boys aged 12-14 years included as part of the National HPV Immunisation programme.

The principal reason for the development of HPV vaccines is the prevention of HPV-related lower genital tract malignancy, particularly of the cervix and the prevention of genital warts. Virus-like particles (VLPs) made of HPV L1 major capsid proteins are used in HPV prophylactic vaccines. VLPs are neither infectious nor oncogenic since they lack viral DNA. Therapeutic vaccines are under development but are unlikely to be available in the foreseeable future.

What HPV vaccines are available?

Merck & Co (Gardasil – marketed by bioCSL in New Zealand) and Glaxo Smith Kline (GSK – Cervarix) have both developed vaccines that have been licensed in New Zealand. Gardasil contains VLPs for HPV types 6, 11, 16 and 18 and Cervarix VLPs for HPV types 16 and 18. Gardasil is licensed in females aged 9 to 45 years and males aged 9 to 26 years.

HPV immunisation (with the quadrivalent vaccine Gardasil) is part of the National Immunisation Schedule for girls as a school-based programme in Year 8 (except in the Canterbury region).
  - Girls who are not vaccinated at school can receive Gardasil from their local medical clinic.
  - Gardasil is FREE for girls and young women up to their 20th birthday.
How effective are the vaccines?

In 2002, Koutsky et al reported the first randomised double-blind placebo-controlled trial of a monovalent HPV 16 VLP vaccine in 2400 young women. This vaccine was 100% effective in preventing both HPV 16 infection and HPV 16-associated cervical intraepithelial neoplasia for at least 3.5 years after vaccination. 99% of vaccinated women seroconverted, i.e. becoming anti-HPV 16 antibody positive.

In 2007 the FUTURE II study published data indicating the efficacy of quadrivalent HPV vaccine in the prevention of high grade cervical lesions. In women naïve to HPV 16 or 18, the efficacy against CIN-2 or 3, adenocarcinoma in situ or cervical cancer related to HPV types 16 or 18 was 98%. In the population at large, this figure reduced to 44% with almost all affected women in the vaccine group (98%) having evidence of infection ‘that was present before the first injection’. This strengthens the argument for vaccinating women prior to onset of sexual activity.

In those women naïve to HPV 16 or 18 who followed protocol, the quadrivalent vaccine was 100% effective in preventing VIN 2-3, VAiN 2-3 associated with these types. In those women who may have been exposed to those types, the efficacy was 71%. This quadrivalent vaccine is highly effective (100% at 3 years) in the prevention of genital warts.

Among women who are positive to one or more vaccine types 6, 11, 16 or 18, quadrivalent HPV VLP vaccine provides high level protection against disease related to the remaining HPV types.

Phase 3 data from the GSK vaccine (Cervarix – currently available but not funded in New Zealand) have demonstrated 100% efficacy against persistent infection and 93% against cytological abnormalities associated with HPV 16 and 18, with follow-up extending to 7.3 years.

These vaccines have no therapeutic effect, i.e. patients with established genital warts or CIN caused by the relevant HPV vaccine type will not benefit from the vaccine.

How safe are these vaccines?

Both vaccines are safe and well tolerated in all age groups. The majority of adverse events were reported as mild or moderate, with injection site reactions the most common.

Who should be vaccinated and when?

Standard HPV vaccination involves three doses by injection, usually spread over six months.

The quadrivalent vaccine, Gardasil, is licensed in New Zealand for females aged 9 to 45 years and males aged 9 to 26 years.

HPV immunisation (with the quadrivalent vaccine Gardasil) is part of the National Immunisation Schedule for girls as a school-based programme in Year 8 (except in the Canterbury region).

- Girls who are not vaccinated at school can receive Gardasil from their local medical clinic.
- Gardasil is FREE for girls and young women up to their 20th birthday.

While not publicly funded for males, the vaccine is safe, well tolerated, produces high seroconversion rates in 9 to 15 year old males, and in males aged 16 to 26 years has been shown to be effective in decreasing the incidence and persistence of infection with HPV 6, 11, 16, 18.

Two dose data

More recent data indicate that 2 doses of either vaccine given at 0 and 6 months in 9-13 year old girls produce a non-inferior immune response to the standard 3 dose schedule in 16-26 year old women.
Males

The American authorities have recently recommended routine vaccination of males aged 11 or 12 with Gardasil. This recommendation was based on data demonstrating the efficacy of Gardasil in preventing warts and the precursors of penile, perineal and perianal cancer in men.87,88

In New Zealand, the vaccine is also indicated for males aged between 9-26 years, but is not funded. Currently a funding submission is being considered to have boys aged 12-14 years included as part of the National HPV Immunisation programme.

How long will they last?

The vaccines are highly immunogenic, and although the duration of immunity is unknown, stable protection has been so far observed for 8.1 years for monovalent HPV 16 vaccine89 and 7.3 years for bivalent HPV 16, 18 vaccine.89 Mathematical modelling suggests that protection from vaccination may be sustained long-term.90,91 Immune memory is a hallmark of vaccines that induce longterm protection. The quadrivalent HPV vaccine formulated on proprietary aluminium adjuvant is highly immunogenic and exhibits excellent immune memory as evidenced by the rapid and robust increase in vaccine type specific antibodies in response to a further dose of the vaccine.92

Will cervical screening still be needed?

Yes. Irrespective of whether a woman has been vaccinated, routine cervical screening will need to continue for the foreseeable future. This is because of possible prior infection with HPV types causing CIN, or new infection with other HPV types not covered by vaccination.

The vaccine and pregnancy

These vaccines are not recommended for use in pregnancy. Completion of the vaccine course should be deferred if a woman is found to be pregnant. There is no evidence from the clinical trials that administration of the Gardasil vaccine adversely affects fertility, pregnancy, or infant outcome.75

Will less common genotypes replace types 16 and 18?

In theory, widespread vaccination may allow less common genotypes to replace the vaccine types but expert opinion believes this to be unlikely.93 A nine valent vaccine, which has the potential to prevent infection against oncogenic HPV types which cause 90% of cervical cancer is currently being studied in efficacy trials.
KEY POINTS

- Genital warts vary widely in appearance and distribution in the anogenital area.
- The differential diagnosis includes normal anatomical findings such as vestibular papillomatosis and pearly penile papules, dermatoses, and intraepithelial neoplasia.
- Diagnosis is generally made on clinical grounds.
- Genital warts which are atypical in appearance should be biopsied to exclude alternate diagnoses, particularly intraepithelial neoplasia.
- Molecular diagnostic techniques are not used for routine diagnostic purposes, but are used according to national guidelines in the triage and management of patients with abnormal cervical smears.

Subclinical HPV infection is asymptomatic and usually diagnosed by finding cytological abnormalities consistent with HPV infection on a cervical smear or by HPV viral detection methods.\(^9^3\)

Genital warts are visible lesions that occur in the anogenital area and there is good correlation between physical findings and histological studies.

There are four variants of genital warts:

1. Skin coloured filiform warts (condyloma acuminata) occur on moist mucosal skin.
2. Skin coloured raised papules with a rough warty surface (verruca vulgaris) arise on drier areas of genital skin.
3. On either dry or moist skin, smooth flat-topped papules which may be pink, red, brown or black, can develop (carpet warts).
4. Giant condyloma up to 4cm in size with a cauliflower surface and red or pink in colour usually arise on dry genital skin.\(^9^4\)

Genital warts are frequently multifocal (one or more lesions at one anatomic site, e.g. vulva), or multicentric (lesions on disparate anatomic sites, e.g. perineum and cervix).\(^9^5-9^7\) It is important to examine the entire lower genital tract for the presence of multicentric visible warts before treatment.

Evaluation for intra-anal warts by anoscopy may be considered for men and women with recurrent perianal warts and/or a history of receptive anal intercourse.

Differential diagnosis

The differential diagnosis of genital warts in women includes lesions which cause papules, plaques and flat erythematous lesions.

Genital papules include normal anatomic structures such as vestibular papillae and large sebaceous glands (Fordyce spots).

Acquired papules and plaques include molluscum contagiosum, condylomata lata, seborrhoeic keratoses, melanocytic naevus, skin tags, angioma, psoriasis and lichen planus.
Usual type vulvar intraepithelial neoplasia (VIN) usually presents as white, red or pigmented papules or plaques which may be pruritic, but can be asymptomatic. The lesions may have a warty surface and can be unifocal or multifocal. A lesion may be small and discrete or may be an extensive plaque covering most of the vulval or perianal skin. It may be clinically indistinguishable from the papular form of external genital warts, but appears more disorganised.98,99 Histological examination of these lesions shows high-grade intraepithelial neoplasia: VIN is usually associated with HPV type 16 infection.

In men, papular lesions other than warts include sebaceous glands (Tyson’s glands), pearly penile papules (angiofibroma), and papular penile intraepithelial neoplasia (PIN) which usually resolves spontaneously). Flat erythematous lesions include psoriasis, seborrhoeic dermatitis, lichen planus, Zoon’s plasma cell balanitis, balanitis cirinata associated with Reiter’s syndrome and PIN.

A number of clinical variants of PIN are recognised; many are associated with HPV type 16100 (see page 39 for pictures).

**MOLECULAR (DNA) DIAGNOSIS OF GENITAL HPV INFECTION**

Virological diagnosis of HPV relies on detection of viral DNA. A variety of DNA detection methods are available.

Polymerase chain amplification (PCR) of a short region of specific viral DNA is probably the most sensitive method.87

hrHPV testing was introduced in New Zealand in October 2009 as an adjunct to cervical cytology in some situations. A number of validated commercial tests are being used.

hrHPV testing has been repeatedly found to have a high negative predictive value (~99%) and to be more sensitive for detecting risk of high-grade abnormalities than conventional cytology, which is generally a more specific test. It is the strong negative predictive value of hrHPV testing that has most effective clinical use in conjunction with cervical cytology. HPV test alone does not detect cell abnormality. hrHPV testing is performed in conjunction with cytology using liquid-based cytology (LBC). This allows testing for both cytology and hrHPV on one cervical smear sample. The NCSP converted to 100% LBC from 1 July 2010.

**HPV testing in the National Cervical Screening Programme (NCSP)**

(The full NCSP Guidelines can be accessed on [http://www.nsu.govt.nz/Health-Professionals/2747.aspx](http://www.nsu.govt.nz/Health-Professionals/2747.aspx)

The testing laboratory relies on the smear taker discussing and gaining consent from the woman for possible hrHPV testing.

The areas of management of women with abnormal cervical smears within the NCSP that may benefit from hrHPV testing include the following:

**The triage of women 30 years and over with ASC-US or LSIL cytology (without an abnormal smear in the last 5 years)** (see Flowchart 1 on page 16).

- ‘Reflex’ testing is determined by the laboratory for women with ASC-US/LSIL and eliminates the need for shorter interval repeat cytology testing. A normal test can reassure a woman that she is very unlikely to have a significant lesion and can reduce the need for colposcopy.
- Women with ASC-US/LSIL smears who test positive for hrHPV should be referred to colposcopy.
- Women who are found to be hrHPV negative can be followed up with repeat cytology testing at 12 months.
- Following a negative cytology result at 12 months, a woman can return to normal 3-yearly screening.
The follow-up of women who have been treated for a high-grade lesion (HSIL/ASC-H) within the last 3 years (see Flowchart 2 on page 17)

- Women who have been previously treated for histologically confirmed CIN-2/3 are at a small increased risk of further disease and cervical cancer. Recurrence may be due to limitations of colposcopy, inadequate treatment/persistent disease or new infection.
- HR HPV testing allows better identification of women at risk of persistent or recurrent lesions, while enabling many women to return to normal screening intervals.
- Women treated for CIN-2/3 should in the first instance undergo follow-up colposcopy and cytology within 6 to 12 months after treatment.
- HR HPV testing and cytology should then be carried out 12 months after treatment and annually thereafter until a woman has tested negative by both tests on 2 consecutive occasions, 12 months apart. A woman can then return to a normal 3-yearly screening interval.
- It should be noted that HR HPV testing should not be carried out sooner than 12 months after treatment of high-grade lesions, as viral clearance may take more than 12 months to occur.
  As indicated in Flowchart HPV Testing Guidance 2 (pages 51 and 52 of Guidelines for Cervical Screening in New Zealand).

Women with high-grade lesions (HSIL/ASC-H) more than 3 years previously, treated or untreated and currently managed by cytology alone (historical testing) (see Flowchart 3 on page 17)

- This group of women currently managed by annual cytology for more than three years, with all tests assessed as negative, would benefit from double testing (cytology and HR HPV).
- HR HPV testing and cytology should be carried out and annually thereafter until a woman has tested negative by both tests on 2 consecutive occasions, 12 months apart. A woman can then return to a normal 3-yearly screening interval.
- Those women who test positive for HR HPV despite repeated negative cytology are likely to have a very low risk of CIN-2/3 and can be retested with cytology and HR HPV annually.
- Refer to colposcopy for any clinical concern.

Post colposcopy management of women with discordant results e.g. high-grade cytology and negative, satisfactory colposcopy

- A single colposcopic examination can miss significant lesions.
- Where findings on colposcopy/histology are negative or show low-grade changes only and the discordance persists following case review, HR HPV testing can be a useful adjunct to further management.
- The NCSP recommends a woman return to 3-yearly screening only after 2 negative sets of HR HPV plus cytology tests 12 months apart.
- Failure to detect CIN-2/3 lesions in a woman with high-grade cytology (following review of the smear) should lead to consideration of a diagnostic excisional procedure, or observation for 1 year with colposcopy, cytology and HPV testing.

Women with a history of genital warts do not need to begin screening at an earlier age or more frequently.

Note: HR HPV testing is not currently supported for follow-up of glandular abnormalities.
Samples required for HrHPV DNA detection and typing

1. Specimens are collected using a broom-type collection device and either:
   - vigorously rinsed in the sample vial fluid if using ThinPrep (do not leave the broom head in ThinPrep vial), or
   - the head of the device must be detached and placed into the vial fluid if using SurePath.
2. Liquid-based cytology sample (ThinPrep or SurePath) sent directly to laboratory by smear taker. This sample needs to be taken and sent in accordance with your local lab protocol.
3. If lubrication is necessary, NCSP recommends use of warm water where possible or lubricant sparingly (KY Jelly only) because lubricant can mask cells.

NB: The following charts are taken from NCSP Guidelines, see [www.nsu.govt.nz/Health-Professionals/2747.aspx](http://www.nsu.govt.nz/Health-Professionals/2747.aspx)
**Chart 2**  
**HrHPV testing of women with a previous high grade lesion following colposcopy within the last 3 years**

- **HSIL/ASC-H in the past 3 years** (histologically confirmed)
  - Colposcopy treatment
  - Colposcopy follow-up with cytology at 6-12 months
  - Cytology and HrHPV test at 12 months post treatment

- **HrHPV negative**
  - Cytology negative
    - Repeat cytology and HrHPV at 12 months
    - HrHPV negative
    - Cytology negative
      - Return to 3 yearly screening

- **HrHPV positive**
  - Cytology negative
    - Refer back to colposcopy

- **Cytology positive**
  - Refer to colposcopy

**NB:** NCSP HrHPV negative, cytology ASCUS/LSIL, as per Guidelines Flowchart HPV Testing Guidance 2.

**Chart 3**  
**HrHPV testing of women with a high grade lesion more than 3 years previously, with subsequent repeated negative cytology tests (historical testing)**

- **HSIL/ASC-H More than 3 years ago** (repeatedly cytology negative since then)
  - Cytology negative
    - HrHPV negative
      - Repeat cytology and HrHPV at 12 months
      - Cytology negative
        - HrHPV negative
          - Return to 3 yearly screening
  - Cytology negative
    - HrHPV positive
      - Annual follow-up cytology and HrHPV testing
        - If both tests negative on 2 consecutive occasions, return to 3 yearly screening

- **Cytology positive**
  - HrHPV negative at any stage, refer to colposcopy dependent on cytology result, as per Guidelines Flowchart HPV Testing Guidance 2.
  - Refer to colposcopy for any clinical concern.
TREATMENT OF GENITAL HPV INFECTION AND GENITAL WARTS

KEY POINTS

- The primary goal of treatment is to eliminate warts that cause physical or psychological symptoms. Non-treatment is an option for asymptomatic warts and the cure should not be worse than the disease.
- There is no definitive evidence that any one treatment is superior to the others and no single treatment is suitable for all patients or all warts.\(^{101}\)
- The method of treatment should be determined by patient preference, available resources and the experience of the practitioner. Other factors include the size, number and site of the warts, the age of the patient and whether the patient is pregnant.
- Commonly used treatments in primary care are self-administered podophyllotoxin or imiquimod, and practitioner administered cryotherapy.
- If there is no significant response within 4 to 6 weeks, an alternative diagnosis, change of treatment modality, or onward referral should be considered.
- Patients should be given information about all the treatment options in order for them to make an informed decision about their preferred choice.
- Continuing lack of response to therapy should be referred to a relevant specialist to review diagnosis and management options.

Subclinical infection

There is no specific treatment for subclinical HPV infections, most of which resolve spontaneously.\(^{102}\)

Genital warts

There is a wide overlapping range of reported response rates and recurrence rates for individual treatments, and few comparative trials, making evidence-based choices of treatment difficult.\(^{103}\) At present there is no ideal treatment for all patients or all warts and spontaneous resolution may occur. 20% may resolve spontaneously in 6 months.\(^{104}\) A cohort study in men demonstrated that although there was no significant difference in the time to cure between those who received treatment compared to those who were not treated, there was a significant decrease in the number of warts and fewer new lesions appeared.\(^{103}\)

The primary goal of treatment is to eliminate warts that cause physical or psychological symptoms. Physically, warts are often asymptomatic but can be painful, friable or pruritic. Emotionally, warts may be socially stigmatising or aesthetically upsetting.

Although treatment can result in disappearance of genital warts, the underlying viral infection may or may not persist. The elimination of external visible warts may not decrease infectivity since the warts may not represent the entire viral burden, as internal sites and clinically normal skin may act as reservoirs for HPV infection. Warts rarely progress to cancer.

Treatment should be discussed with the patient and tailored to their infection and needs, as well as to available resources.
Patients should be given information about all treatment options (including non-treatment) in order for them to make an informed decision about their preferred choice.

Not all treatments are funded and the availability of some options may be restricted.

Presentation may also influence treatment choice, with warts on moist, partially keratinised surfaces and intertriginous areas responding better to topical treatments than do warts on dry, fully keratinised surfaces and open areas. Aggressive ablative therapy should be avoided over the clitoris, glans penis, urinary meatus, prepuce, and prepuceal cavity in uncircumcised men. Perianal warts, and often genital warts in women, as they cannot be adequately visualised, are not suitable for application of podophyllotoxin.

For a summary of treatment by anatomic site and treatment options, see Tables 1 and 2, pages 24-25.

**Self-applied treatments (home therapy)**

Self-applied treatments include the immune enhancer imiquimod (AldaraTM) cream and the chemical ablative podophyllotoxin (CondylineTM solution and WarticonTM cream). These are first-line treatments in the United States. Patients must be able to follow application instructions to successfully use these therapies and careful explanation of their use is important. Higher than recommended doses of both of these applications may lead to an increase in adverse skin reactions.105

**Imiquimod**

Imiquimod (AldaraTM) is fully subsidised for patients who have external anogenital warts and podophyllotoxin has been tried and failed (or is contraindicated), or where podophyllotoxin is unable to be applied accurately to the site. **Clinicians will need to make Special Authority applications for this subsidy (available on line).**

These applications may lead to an increase in adverse skin reactions.105

**Mechanism of action:** An immune enhancer that stimulates production of interferon and other cytokines. It appears to have an advantage of reduced recurrence rate.106

**Suitable for:** Women, and some men with foreskin-associated warts. Particularly useful for ‘carpet warts’ (smooth, flat-topped and joined-up), where the female introitus and perianal area are involved.

**Contraindications:** Not currently recommended in pregnancy. A register of imiquimod use in pregnancy has been established.*

**Application:** Careful application of imiquimod cream is important.

Applied onto fingertip and rubbed onto clean, dry, wart area until cream vanishes, once daily, 3 times per week, prior to normal sleeping hours and after sexual activity (imiquimod weakens condoms and vaginal diaphragms). Wash off next morning or after 6-10 hours.

The manufacturer recommends that a sachet be used for single use to cover an area of up to 20cm². However, it has been demonstrated that one sachet will cover up to 386cm² and, although not recommended by the manufacturer, one sachet is commonly used for multiple applications.107 It is recommended that treatment should be continued until the warts have resolved, or up to a maximum of 16 weeks per course.

A preliminary study involving a small number of largely pre-treated women showed that a 4 week course of imiquimod was as effective as longer courses of 8, 12 and 16 weeks, with fewer adverse reactions and reduced cost.107 The majority of women who cleared their warts did so by 8 weeks regardless of the duration of treatment, suggesting that imiquimod prompts a cell-mediated response with specific T-cell immune memory within the first 4 weeks.

Side effects: Localised erythema, swelling and/or rarely superficial ulceration of the treated area can be expected from 2 to 6 weeks as part of the immune response and will probably be related to the direct therapeutic action of the agent, i.e. switching on the immune response rather than to hypersensitivity. If indicated, the clinician may advise the patient to miss the next 2 applications, use salt water baths as well as drying with a hairdryer before recommencing treatment. These local skin reactions cause discontinuation of the treatment in less than 2% of patients. Can also cause flu-like symptoms.

Podophyllotoxin

Podophyllotoxin is dispensed as a 0.5% solution (Condyline™). The 0.15% cream (Wartec™) has been discontinued. These contain purified podophyllin in a more standardised form. Podophyllotoxin has been extensively studied in randomised and placebo-controlled trials.

Mechanism of action: The active moiety is an antimitotic and causes localised tissue necrosis. Localised epidermal pallor, caused by intracellular oedema, can usually be seen within 48 hours of application.

Suitable for: External warts which can be visualised. May be less effective for keratinised warts.¹⁰⁵

Not for use in women because of difficulty in application.

Contraindications: A history of hypersensitivity (incidence approximately 1%). They are not used in pregnancy or lactation, or in children. Should not be used on warts which cannot be visualised, on internal warts, and they are not recommended for extensive wart areas (>10cm²).

Application: Patients must be able to visualise, identify and reach their warts, and if necessary should be shown what is wart and what is normal skin, using a mirror. Podophyllotoxin solution should be applied carefully to the warts using one of the applicators enclosed with the product, taking care that the solution does not come into contact with healthy skin and allowing drying after application to avoid inadvertent spreading of the solution. Applying Vaseline or zinc ointment on healthy skin around the wart(s) can be protective. The solution should be applied twice daily for 2 to 3 consecutive days each week until the warts have resolved, or for a maximum of 5 consecutive weeks.

Side effects: Mild erythema with slight pain and/or superficial ulceration of the treated area can be expected. More severe skin ulceration, erosions, erythema, irritation, scarring, phimosis, pain, burning and soreness can occur. These effects are usually only mild to moderate in severity and resolve when the warts necrose.¹⁰⁵

Physician-applied treatments

Cryotherapy

Mechanism of action: Destroys the wart tissue by freeze/thawing, resulting in sloughing and wart destruction.

Suitable for: External and internal warts. Dry and moist warts. Can be used in pregnancy.

Application: Adequate training and expertise in this technique is required. Effective cryotherapy may be achieved by a cryoprobe or application of liquid nitrogen by spray or by loosely wound cotton on a wooden applicator (not with tightly wound, typical cotton swabs). The full thickness of the wart should be frozen until there is whitening of the surrounding skin area for 2mm. Treatment is repeated weekly until the warts have resolved. Most sexual health clinics have facilities for more focused freezing using fine probes with nitrous oxide or carbon dioxide cryoguns. Patients can be referred for treatment.

Side effects: Pain and necrosis following application of cryotherapy are fairly universal, and blistering may occur. The treatment of large warts or areas at one time can create wound care problems. Adverse effects include irritation, local oedema, necrosis, ulceration and pain, especially when the treated area thaws. Both hypo- and hyperpigmentation can occur, but this is usually temporary. Although the use of injected local or topical anaesthesia (e.g. Emla cream) is rarely necessary, it may facilitate cryotherapy by reducing pain when a large number or area of warts are present.
Curettage and scissor or scalpel excision

**Mechanism of action:** Directly remove genital warts.

**Suitable for:** Exophytic warts.

**Contraindications:** Known bleeding abnormality. Can be used in pregnancy.

**Technique:** Direct removal with extension of the wound only into the upper dermis. Haemostasis can be secured with an electrosurgical unit or a chemical styptic (e.g. silver nitrate sticks); suturing is rarely required or indicated when removal is done properly.

**Side effects:** Localised pain, for which mild analgesics may be required, and bleeding. If operating-room surgery is required there are the additional hazards of a general anaesthetic.

Electrocautery or diathermy (hyfrecation)

**Mechanism of action:** Coagulates proteins of treated tissues.

**Suitable for:** Anogenital and oral warts.

**Contraindications:** None. Can be used in pregnancy.

**Technique:** Both electrocautery and laser therapy require masks and a smoke evacuator to prevent inhalation of aerosol HPV and oropharyngeal transmission. Advance training and expertise is required to minimise scarring. Once anaesthesia is attained, physical destruction of warts. Usually, no additional haemostasis is required.

**Side effects:** Local pain and possible infection. Scarring is more common than after cryotherapy.

Laser therapy

**Mechanism of action:** Vaporisation of warts.

**Suitable for:** Vulval, vaginal, cervical and perianal warts. Not considered first line because of expense. Can be considered if there are obstructive or large lesions.¹⁰⁸

**Contraindications:** None. Can be used in pregnancy.

**Technique:** Adequate training required. Dermal tissue destruction should be limited to 1mm.¹⁰⁵

**Side effects:** Local pain. Scarring and hypo- or hyperpigmentation can be minimised by controlling depth and avoiding treatment beyond the dermal papillae.

Podophyllin resin

Podophyllin is no longer recommended as a treatment for genital warts. It has a higher incidence of adverse reactions and reduced efficacy when compared to podophyllotoxin.

Trichlorocetic acid (TCA)

**Mechanism of action:** TCA is a caustic agent that destroys warts by chemical coagulation of proteins. Treatment solution concentrations have not been standardised and saturated concentrations of 85-95% have been used.

**Suitable for:** Small warts on moist surfaces.

**Application:** Training is necessary before applying this treatment. TCA solutions should be applied sparingly and allowed to dry before the patient sits or stands. If there is intense pain, the acid can be neutralised with soap and sodium bicarbonate. TCA solution has a low viscosity (comparable to that of water), and if over-applied can spread rapidly and ‘run’, damaging a significant area of normal tissue.

**Contraindications:** Nil, but most suitable for small moist warts. Can be used in pregnancy.
5% flurouracil cream
Not to be used for genital warts because of toxicity and teratogenicity.

Systemic interferon
Not recommended because of expense and side effects and poor efficacy.

Selecting treatment(s) for individual patients (see Table 3, page 26)
Many patients require a course of therapy rather than a single treatment. Studies have not systematically evaluated the factors that influence the selection of therapy, although a survey found that patients expressed a desire for topically applied therapies that can be used at home. As no one treatment is ideal for all patients or all warts, consideration should be given to a change of treatment modality or onward referral if there is no significant response within 4 to 6 weeks. Usually patients require a course of therapy, rather than a single treatment.

Most treatment modalities are eventually effective in eliminating small numbers of warts. Patients with limited disease (i.e. 1 to 5 warts) may benefit most from cryotherapy or simple office surgery. Ablative therapy should be considered in those with large or extensive areas of warts to at least debulk their warts.

For self-applied therapeutic modalities, treatment beyond the manufacturer's recommendations is not advisable and concurrent use of multiple therapeutic modalities on a single wart is not recommended as routine treatment. It should be borne in mind that a continuing lack of response to therapy might indicate other pathology and referral for assessment should be considered in such cases.

Continually evaluate the response to treatment to avoid over-treatment and a therapeutic course worse than the disease itself. Persistent hypo- and hyperpigmentation is a possible complication of ablative therapeutic modalities. Depressed or hypertrophic scars rarely occur. Ablative treatment, especially to the introitus, can result in disabling chronic pain syndrome or hyperaesthesia at the treatment site.

Surgical removal of warts, by diathermy, laser ablation or excision under local or general anaesthesia, may render the patient wart-free, usually in a single visit. However, the disadvantages are that significant training, a moderate amount of equipment, and a longer patient visit are required. Although surgery is obviously of most benefit when warts are present in large numbers or over large surface areas, it can be used for average cases. While the cost of a single surgical visit may be greater, surgery can accomplish in one visit what other ablative modalities often require multiple visits to accomplish, which may result in greater cost-effectiveness for some patients. However, recurrence rates may be the same as other therapeutic modalities and the morbidity of treatment may be greater with increased risk of pain, infection and scarring.

Combination treatment
Although treatments are commonly combined, few studies have been published which support this practice. It has been shown that TCA and podophyllin in combination reduce the number of treatments to achieve clearance, compared to TCA alone. A combination of laser and imiquimod has been shown to be safe and well tolerated.
Symptomatic therapy

- For ongoing management by the GP or health professional, the patient should be advised to return weekly for treatment until all the warts have gone. Patients may be referred to a specialist or sexual health clinic when there is a poor response to treatment, or warts continue to recur after 3 months.
- Saltwater baths are the single most useful thing the patient can do to help soothe and heal the genital area during treatment. 2 handfuls of plain salt per bath or 2 tablespoons in a large bowl, preferably twice daily, and dry with hairdryer.
- Lignocaine gel 2% (Xylocaine™) is a useful local anaesthetic to put on raw areas 2 minutes prior to micturition and defaecation.
- A concomitant thrush infection is common. Local imidazole preparations often help, and/or oral fluconazole.
- For large areas made raw by wart ablations, 1% silver sulphadiazine cream is useful.

Post treatment follow-up

The benefit, frequency, interval and type of follow-up care necessary after treatment of warts has not been studied. Follow-up evaluation can provide the opportunity for education and counselling of patients. The need to monitor for complications of therapy will vary greatly on the basis of the patient's experience and cognitive ability, the number and location of warts, and the treatment modality used. Patients concerned about recurrences could be offered an evaluation 3 months after successful treatment, since most recurrences occur during this period. In immunosuppressed patients, recurrences of warts are much more common and periodic follow-up evaluation may be necessary.

Patients with genital warts are at risk of other sexually transmitted infections (STIs). Management of genital warts must include careful assessment and testing for other STIs as appropriate, depending on the patient's sexual history.

Treatment recommendations

- The goal of treatment for genital warts is the removal of visible warts. Grade C
- Standard therapies for genital warts can eventually remove most warts, although no one treatment is ideal for all warts or all patients. Grade A & C
- Clinicians should be knowledgeable about, and have available to them, at least one patient-applied treatment and one health care provider administered therapy. Grade C

Assessment of sex partners

Sex partners of patients who have genital warts may wish to be assessed for the presence of genital warts and other sexually transmissible infections. It is not recommended to test for subclinical HPV infection with vinegar (acetic acid). Sex partners may benefit from counselling about the implications of having a partner who has genital warts. The use of condoms may reduce, but does not eliminate, the risk of transmission to uninfected partners. Female partners of patients who have genital warts should be reminded that cytological screening for cervical cancer is recommended for all sexually active women who have ever had sexual intercourse.

Similarly, the specific benefit of evaluating sex partners of women with HPV-related cervical squamous intraepithelial lesions (SILs) for external genital warts is not known. Although as many as half of male sex partners of women with cervical SILs may have evidence of genital HPV infection, relatively few have external genital warts. It is unclear whether treatment of men with evidence of genital HPV infection influences the natural history of their female sex partner’s cervical disease.110 There is little information available currently about the health effects of HPV-related cervical disease on female sex partners of women with HPV infection.111 Women who are sex partners of patients with external genital warts do not require additional cytological screening. The benefit of evaluating male sex partners of men with external genital warts is not known.
Table 1: Treatment by site
(For details of individual therapies, see Table 2)

<table>
<thead>
<tr>
<th>Site</th>
<th>Treatment</th>
<th>Use in Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>External genital warts</td>
<td>Patient applied: Imiquimod (Aldara 5% cream);</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>OR Podophyllotoxin solution. Provider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>administered: Cryotherapy;  OR Trichloracetic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acid;  OR Surgical removal;  OR Laser;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR Diathermy.</td>
<td></td>
</tr>
<tr>
<td>Cervical warts</td>
<td>Cryotherapy with liquid nitrogen</td>
<td>Yes</td>
</tr>
<tr>
<td>(high grade CIN excluded)</td>
<td>Cryoprobe not recommended in vagina because</td>
<td></td>
</tr>
<tr>
<td>Vaginal warts</td>
<td>of risk of vaginal perforation/</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fistula formation. However, the experienced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>operator can use a bent Cryoprobe with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>protective sleeve (to stop sticking to the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vaginal wall;  OR Trichloracetic acid.</td>
<td></td>
</tr>
<tr>
<td>Urethral meatal warts</td>
<td>Cryotherapy with Cryoprobe (technically</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>difficult with liquid nitrogen). N.B. Risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of stenosis if overzealous treatment. Note:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podophyllotoxin and imiquimod have been used,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>but limited data.</td>
<td></td>
</tr>
<tr>
<td>Anal warts</td>
<td>Cryotherapy. Special open sided anoscopes and</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>bent probes are available to permit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>treatment laterally;  OR Surgical removal.</td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>Cryotherapy.</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2: Summary of treatment options
Note: All treatments have wide response and recurrence rates. Not all treatments are funded in New Zealand.

<table>
<thead>
<tr>
<th>Forms of Treatment</th>
<th>Usage</th>
<th>Application Frequency/Duration</th>
<th>Advantages and Disadvantages</th>
<th>Use in Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient applied</td>
<td></td>
<td>Patient should apply once daily at bedtime, 3 times a week for up to 16 weeks. The treatment</td>
<td>Immune enhancer. May be more effective on moist warts e.g. introitus and perianal areas. Relatively low recurrence rate.</td>
<td>Not recommended. If used, should be registered with 3M Monitoring System.*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>area should be washed with soap and water 6 to 10 hours post application.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imiquimod (Aldara) 5% cream</td>
<td>External genital warts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fully subsidised through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Authority</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>application (see page 19 for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>criteria)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podophyllotoxin</td>
<td></td>
<td>Patient should apply podophyllotoxin solution with the supplied applicators, protecting</td>
<td>Results are dependent on patient compliance and correct application of treatment. Not for large (&gt;10cm²) wart areas and may be less effective on dry warts. Overzealous use can cause painful ulceration. The solution should be used on readily visible warts, particularly in men.</td>
<td>Contraindicated in pregnancy.</td>
</tr>
<tr>
<td>Condyline (solution)</td>
<td></td>
<td>surrounding skin with Vaseline. The cream is applied with a finger, to visible external warts,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>twice a day for 3 days, followed by 4 days of no therapy. This cycle may be repeated, as</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>necessary, up to 4 cycles. The total wart area should not exceed 10cm², and the total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>volume of podophyllotoxin solution should not exceed 0.5 ml/day. If possible, the initial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>treatment should be demonstrated by the health care provider.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 3M Monitoring System in Pregnancy:
Pharmacovigilance Unit, 3M Health Care Ltd, Morley Street, Loughborough, Leicestershire, LE11 1EP, UK.
<table>
<thead>
<tr>
<th>Forms of Treatment</th>
<th>Usage</th>
<th>Application Frequency/Duration</th>
<th>Advantages and Disadvantages</th>
<th>Use in Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Provider administered</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cryotherapy (Cryoprobe or liquid nitrogen on prepared swabs)</strong></td>
<td>External anogenital, cervical, urethral, anal or oral warts</td>
<td>Weekly. Freeze full thickness of wart, whitening the surrounding skin area up to 2mm. The size of the swab should be tailored to the size of the lesions e.g. use of orange stick and wrap around cotton wool to obtain correct size.</td>
<td>Effective for moist and dry warts, pain can be reduced by use of local anaesthetic, gel/cream. Safety and efficacy highly dependent on skill level, equipment and experience. Risk of over or under application with liquid nitrogen.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Electrocautery or diathermy (Hyfrecation)</strong></td>
<td>External anogenital or oral warts</td>
<td>Single treatment.</td>
<td>Prompt wart free state, results depend on skill level and training, requires equipment, longer clinic visit, local anaesthesia is mandatory. Skin bridges should be left in between sites to aid healing and minimise scarring.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Laser therapy</strong></td>
<td>Extensive anogenital warts</td>
<td>Single treatment.</td>
<td>Prompt wart-free state, may require general anaesthetic. Expensive and only available in a few major centres.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Surgery</strong></td>
<td>Extensive anogenital, oral or anal warts</td>
<td>Removal by tangential scissor excision, tangential shave excision, curettage or electrosurgery. Treatment can be repeated as required.</td>
<td>Prompt wart free state, results depend on skill level and training, requires equipment, longer clinic visit. Anaesthesia mandatory. Particularly useful for pedunculated warts, and small numbers of anatomically accessible warts.</td>
<td>Yes</td>
</tr>
<tr>
<td><strong>Trichloracetic acid (TCA)</strong></td>
<td>External anogenital, vaginal or anal warts</td>
<td>A small amount should be applied only to warts and allowed to dry, at which time a white “frosting” develops. If an extra amount of acid is applied, the treated area should be powdered with sodium bicarbonate, or liquid soap preparations to remove unreacted acid. Surrounding skin can be protected with petroleum jelly. Can be repeated weekly as required.</td>
<td>Inexpensive, effective for moist and dry warts. Needs careful application by a trained health professional. Not for large areas of friable warts. Low viscosity may result in spreading if over applied, which can cause painful iatrogenic ulceration.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 3: Factors that may influence the selection of treatment for warts

<table>
<thead>
<tr>
<th>Patient preferences and characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference for self-applied or administered treatments.</td>
</tr>
<tr>
<td>Ability to identify accurately and physically reach warts.</td>
</tr>
<tr>
<td>Cognitive ability.</td>
</tr>
<tr>
<td>Cost of treatment.</td>
</tr>
<tr>
<td>Duration of treatment and/or number of visits, distance and work.</td>
</tr>
<tr>
<td>Tolerance of pain.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety and efficacy of treatments for warts have not been studied in paediatric populations.</td>
</tr>
<tr>
<td>When treating, attention should be paid to avoiding and controlling pain associated with treatment. Requiring a parent or guardian to apply a treatment that may be painful is questionable.</td>
</tr>
<tr>
<td>Variations in the rate of psychosocial development in adolescence should be taken into account (i.e. cognitive ability to understand and carry out any treatment programme, particularly patient-applied therapy).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podophyllotoxin is not recommended and the safety of imiquimod in pregnancy is not known. 5-flourouracil is a teratogen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wart size and count: in general, provider administered topical treatments are not ideal for large areas of warts, although they may have a debulking effect.</td>
</tr>
<tr>
<td>Anatomic location and circumcision status (men): Warts on moist (partially keratinised) surfaces and intertriginous areas appear to respond better to topical treatments than do warts on dry (fully keratinised) surfaces and open areas. Aggressive ablative or surgical therapy should be avoided over the clitoris, glans penis, urinary meatus, prepuce, and prepucial cavity in uncircumcised men.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health care provider preferences and characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical training and experience.</td>
</tr>
<tr>
<td>Financial and physical resources.</td>
</tr>
<tr>
<td>Scheduling limitations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunologic status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunocompromised patients may have lower response and higher recurrence rates.</td>
</tr>
</tbody>
</table>
SPECIAL SITUATIONS

Pregnancy

KEY POINTS

• Genital HPV is common in pregnant women.
• It is extremely rare for babies to develop clinical HPV. Where it does occur it usually manifests as recurrent respiratory papillomatosis and this may cause serious illness in the neonate.
• Transient HPV colonisation in the neonate is common, but persistent infection is unusual.
• Ablative methods, e.g. cryotherapy or diathermy, should be used for treatment of genital warts in pregnancy.
• Caesarean section has not been shown to significantly reduce maternal-fetal transmission.

Genital warts can proliferate and become friable. This is probably the consequence of altered immunity and increased blood supply. Removal during pregnancy is often requested by the patient and can be performed with ablative methods. HPV types 6 and 11 can, rarely, cause laryngeal papillomatosis in infants and children. A Danish study reported an incidence of 7 per 1000 where there was a documented history of external genital warts. Tasca et al report an overall incidence of 3.5 per million person-years and a prevalence of 4 cases per 100,000 children. In babies born to mothers with genital warts, HPV DNA can be isolated from aerodigestive swabs in a third to a half of cases, however the risk of development of RRP is approximately 1 in 400. Presentation can be at any age, but typically it is at 3 to 4 years with progressive hoarseness. An earlier presentation is often associated with a poorer prognosis, because of multi-centric disease.

Although there appears to be an association between maternal genital warts during vaginal delivery and laryngeal papillomatosis, the route of transmission (transplacental, perinatal, or postnatal) is not completely understood. HPV DNA has been detected in amniotic fluid, raising the possibility of ascending infection, and HPV DNA has been detected in the peripheral blood mononuclear cells of mothers and in cord blood samples. Although this may suggest transmission via a haematogenous route, transmission via microscopic tears in the placental membranes, as occurs with other organisms, is a more likely explanation. There has been a wide variation in reported neonatal transmission rates for HPV, although larger studies using more recent HPV DNA technology indicate that transmission rates are low. In a study of 574 women, 47.1% were identified as being HPV DNA positive (mainly in the third trimester) at age < or =24 and 24.4% at age >24. However, 1.6% of newborns were HPV DNA positive at a mean of 65 hours after birth. Non-concordance between parental and neonatal HPV types suggests the possibility of maternal infection acquired antenatally at untested intervals during pregnancy, or in the case of oral infection from other contacts after birth. Follow-up studies of infants from whom HPV DNA was isolated at birth indicate that the virus becomes undetectable in many infants, indicating that contamination rather than true infection has occurred.

In summary, although HPV infection is frequently detected in pregnant women, detection of HPV in newborns is uncommon and is likely to be due to contamination.

Although caesarean section reduces the risk of HPV isolation from the neonate, it has not been shown to significantly reduce neonatal transmission of HPV, nor of laryngeal papillomatosis. Many studies have been limited by lack of long term follow-up and assessment of only HPV positivity rates after birth. Caesarean delivery should not be performed solely to prevent transmission of HPV infection to the newborn. In rare instances, caesarean section delivery may be indicated for women with very large genital warts if the pelvic outlet is obstructed or if vaginal delivery would result in excessive bleeding.
Treatment during pregnancy requires some special considerations. Podophyllin and podophyllotoxin should not be used in pregnancy. Maternal and fetal deaths have been reported following the use of podophyllin for large vascular warts. Imiquimod is not recommended as there is insufficient data to recommend its use in pregnant women. Individual case reports and a small case series have been published but usage of imiquimod should be reported to the register of imiquimod use in pregnancy* which has been established. Appropriate treatments of external genital warts during pregnancy include cryotherapy, TCA or surgical removal, and laser ablation.

HPV in pregnancy has no link with miscarriage, premature labour or other types of pregnancy complications.

Treatment recommendations

- Podophyllin and podophyllotoxin should not be used in pregnancy. **Grade C**
- Caesarean section does not significantly reduce vertical transmission and is only indicated when genital warts are likely to cause obstruction of the pelvic outlet or excessive bleeding. **Grade B**

Breastfeeding

The use of podophyllin and podophyllotoxin are not recommended in women who are breastfeeding because of systemic absorption. The use of imiquimod is not recommended because of insufficient data. Trichlorocetic acid, cryotherapy, electrocautery and laser can be used during lactation.

Immunosuppressed patients

Persons who are immunosuppressed because of HIV or other reasons may not respond as well as immunocompetent persons to therapy for genital warts, and they may have more frequent recurrences after treatment. Immunosuppressed women should have cervical Pap smears annually, with early referral for colposcopy if abnormalities are detected. Squamous cell carcinomas arising in squamous intraepithelial lesions resembling genital warts occur more frequently among immunosuppressed persons.

---

* *3M Monitoring System in Pregnancy: Pharmacovigilance Unit, 3M Health Care Ltd, Morley Street, Loughborough, Leicestershire, LE11 1EP, UK.*
### ISSUES IN COUNSELLING

#### GENITAL HPV – KEY INFORMATION FOR PATIENTS

- Genital HPV (Human Papilloma Virus) is a common virus that is carried by a large percentage of sexually active people.
- Genital HPV is highly infectious and is transmitted by skin-to-skin contact.
- There are different strains (types) of genital HPV – some cause visible genital warts and some are subclinical (invisible to the naked eye).
- Some subclinical HPV infections are due to High Risk HPV types and if these remain undetected and untreated may lead to pre-cancer changes and/or cancer of the lower genital tract.
- Genital warts are Low Risk HPV and are not associated with the development of cervical cancer.
- It is possible to be infected by more than one type of HPV.
- Developing a genital HPV infection whilst in a long-term monogamous relationship need not imply infidelity. It is possible that one or even both were exposed to the virus months or years previously and have carried it without their knowledge.
- Most genital warts disappear even if left untreated. Treatment is usually for cosmetic and comfort reasons.
- After successful treatment, genital warts may recur – this usually happens in about 1 in 3 people.
- Many people who have genital HPV have neither symptoms nor signs and will be unaware of they have the infection.
- Regular cervical screening is essential to ensure early detection and treatment of infected cells, to prevent the development of cervical cancer.
- HPV vaccine (Gardasil) immunises against four types of genital HPV: Types 16 and 18 which cause 70% of cervical cancers and types 6 and 11 which cause 90% of genital warts.
- Currently there are no tests available to detect whether clearance of HPV has occurred.
- Condoms have some use in the reduction of transmission of genital HPV.
- Genital HPV does not affect fertility.
- Genital HPV does not stop you having sex.
- **Cervical cancer can be prevented by HPV vaccination and having regular smears.**

Genital HPV infections are common in sexually active people. However, conditioning and social values contribute to individuals having a wide range of emotional responses when given a diagnosis of genital HPV.\textsuperscript{111,121,122}

**Grief and shame related to the diagnosis of genital HPV include the following:**

- Shock, denial, surprise, anger, blaming self or others, guilt, loss of assertiveness, sense of injustice.
- Sense of one’s body as flawed, dirtiness, loss of sex life, unworthiness, transmission anxiety.
- Isolation: Anxiety around others reactions may prevent disclosure to normal avenues of support.
- Anxiety about partner/s possible response when negotiating safer sex.

Good therapeutic management acknowledges and addresses these emotional responses. Counselling within the consultation plays an important role and can significantly assist patients with the adjustment of being diagnosed with viral sexually transmitted infection.\textsuperscript{123,124} It is ideal that these issues can begin to be addressed at the first presentation. In subsequent consultations the patient’s current understanding should be explored, and further information provided for gaps in knowledge or understanding. If the person has seen another health professional, do not assume that they have addressed the above points. Although patients may not want to take up the offer of counselling and support initially, it is important to check whether patients’ needs have changed over time.
The patient who presents with genital HPV for the first time may feel very vulnerable, even if they have previously been confident about routine examinations. It is helpful for the clinician to indicate their own comfort with sexual health topics and to acknowledge how difficult it is for some people to present for treatment. Sometimes the diagnosis is unexpected. Health professionals/counsellors’ acknowledgment of the patient’s response to the diagnosis is important. For some patients, a diagnosis of genital HPV may be the most challenging health disruption they have experienced, given the stigma associated with sexually transmitted infections. Epidemiological information may not be entirely reassuring: topics such as clarification about fidelity may be paramount. Empathy and time to talk are especially important, given the factors of possible stigma and isolation limiting disclosure outside of the consultation. Counselling and education about genital HPV should take place in an appropriate setting. The following points optimise clinical care and patient teaching:

- Comfortable setting
- Patient dressed
- Minimal interruptions
- Confidentiality assured
- Adequate time
- Attentive listening
- Avoidance of pejorative and prejudicial terms
- Empathic attitude
- Written information to take away and read
- Encouragement to return with list of questions

The educational process typically includes answering questions about the impact of the diagnosis on the person’s perceived quality of life, answering questions about the natural history of the infection; the likely impact of the infection on the patient; assessment of how well they are coping; future sexual activity. Common worries to address include: anxiety about the risk of HIV or other STIs; whether the diagnosis means they have been promiscuous; whether the clinician’s opinion of them has altered. With the advent of the HPV vaccine, patients want advice about the option of vaccination for themselves and for future partners. Attending to these points will address possible emotional consequences, social stigma and future safer sex decisions.
GUIDELINES ON THE MANAGEMENT OF ANOGENITAL HPV IN CHILDHOOD

Epidemiology

Following a dramatic increase between 1966 and 1984, HPV is now the most common viral infection of the adult and adolescent female genital tract. There was a parallel increase in case reports of anogenital warts in children but serological studies suggest the population prevalence in children remains low.

Clinical behaviour

HPV infection of the anogenital region is commonly asymptomatic. Children often present because a caregiver has noted the lesions, although some present with pain or bleeding on defaecation, or secondary infection. Classical cauliflower-like condyloma acuminata do occur in children, but anogenital warts have multiple appearances.

Many adults have disease at several levels of the genito-urinary tract. Multi-centric disease has rarely been described in children, but it has seldom been looked for.

The incubation period of anogenital warts in adults is widely variable. The incubation period in children is unknown, largely due to the uncertainties surrounding vertical transmission. There is a high likelihood of spontaneous regression over time. HPV may be particularly troublesome in children on immuno-suppressive therapy, and the possibility of immune deficiency (including HIV) should be considered in any child who has particularly refractory lesions.

Virology

Virologic diagnosis relies on the detection of HPV DNA (see page 10). The use of PCR has greatly increased sensitivity, but there is always a risk of contamination. Many HPV types have been described, but no specific type is invariably associated with a particular clinical appearance. Infection with multiple types is common and it is technically impossible to be sure that all types from a given patient have been isolated. HPV DNA can be found in apparently normal tissue surrounding clinical lesions and in vaginal washings from patients with no detectable lesions.

In adolescents and adults, types 1-4 and 7 are found almost exclusively in skin warts. In children, however, there is a significant prevalence of types 1-3 in anogenital warts. Laryngeal papillomas are usually, but not always, associated with HPV type 6 or 11.

In determining the source of infection, the virology adds little to the history and clinical examination. There is little, if any, value in typing for forensic purposes.

Neoplasia

In sexually active adolescents and adults, as has already been described, there is a striking association between HPV and dysplasia or carcinoma of the cervix, vulva, penis and anus. Malignancy has been reported in children with laryngeal papillomatosis. The risk of late malignancy in children with anogenital infection is not known. There are case reports of vulval dysplasia and carcinoma in young adolescents who had vulval warts from infancy and of Bowenoid papulosis (intraepithelial neoplasia) in childhood.
Methods of transmission in childhood

In adults, genital HPV is a sexually transmitted infection. Sexual transmission clearly occurs in children, but other forms of transmission also occur.

**Sexual transmission:** Adolescent genital HPV is associated with high risk sexual behaviour and early age at first intercourse, but is less likely to persist than infection in women who acquire it an older age. It was not recognised until 1971 that anogenital warts in children might be sexually transmitted. From 1971 to 1993, 300 cases were published, of which 29% were sexually transmitted. The percentage of sexual abuse in various studies varies from 0-100%, which may reflect differences either in the populations studied or in the methodology. A recent multi-center study found a prevalence of HPV of 13.7% in children referred for possible sexual abuse, compared with 1.3% in a control group.

Sexual abuse has been documented in infants whose warts presented as early as the first year of life, and suggested in some cases of oral or laryngeal papilloma. However, accumulating evidence suggests that in young children at least) the presence of warts in the anogenital region or oropharynx and/or the detection of HPV DNA in the anogenital region is not, in isolation, a reliable indicator of childhood sexual abuse.

**Vertical transmission:** HPV can be transferred from mothers to their offspring, probably from an infected birth canal. It is difficult to quantify the risk to these babies, but it appears low. There is no correlation between the presence of HPV DNA in the baby and the presence or absence of known clinical or virologic infection in the mother. The duration of viral shedding and/or persistence of HPV DNA on the skin of infected babies remains unclear. Some authors have reported persistence of HPV DNA to 2 years of age, but other longitudinal studies have found almost no evidence of persistent perinatally acquired infection.

Vertical transmission may also cause juvenile onset respiratory papillomatosis (laryngeal papillomas) that may present as hoarseness, or rarely as recurrent pneumonia or breathing difficulties due to lower respiratory tract involvement. The upper limits of the incubation period from birth to clinical infection have not been established, but in laryngeal disease may be as long as 5 years.

Given that symptom-free infection is common in pregnancy (see above), one cannot completely exclude the possibility of vertical transmission in any child. However, one should remember that maternal infection does not prove vertical transmission. Several cases have been described in which the mother’s sexual partner was abusing the child. On the basis of the evidence to date, it is reasonable to conclude that most vertical transmission will manifest itself in young children and that child sexual abuse is not the most likely cause of HPV in the majority of cases involving children under the age of 4 years.

**Other means of transmission:** Dermatological literature suggests that children may acquire anogenital warts by infection from cutaneous warts on their own hands (auto-inoculation), or on the hands of adults (hetero-inoculation). Arguments for this hypothesis are the prevalence of HPV 2 in anogenital warts in childhood, and a number of suggestive case reports and case series. A Spanish longitudinal study of women enrolled during pregnancy found that the mother’s HPV status at the 6 week post-partum visit was a stronger determinant of HPV infection in the child than maternal HPV status in pregnancy, and suggested that horizontal mother-to-child transmission during the first few months of life might be more important than vertical transmission. Similarly, other authors have also raised the possibility of fomite transmission.

In conclusion, it must be recognised that methods of transmission other than sexual do occur. The most common of these may be vertical transmission, or horizontal transmission in early childhood. However, this can never be assumed and suggestions of auto-inoculation should be regarded with caution. Sexual contact must be included in the differential diagnosis whenever a child or young person presents with anogenital warts.
Assessment

Establish the age at which the lesions first appeared, and what symptoms they cause. Consider all means of transmission: vertical (maternal infection including cervical smears; symptoms of respiratory infection); innocent inoculation (other warts in the child or young person; warts in other relatives or caregivers); sexual transmission (adolescent sexual activity; disclosure of sexual abuse; behaviour changes; risk factors for sexual abuse, such as contact with a known sexual offender or a family history of sexual abuse).

Do not forget to examine the whole body (including the conjunctivae, mouth and throat) for warts. Examine the genitalia and anus with a light source and some kind of magnification, such as an auroscope. In females, part the labia and inspect the vulva carefully. In males, do not forget to examine the corona and frenum of the penis (if the foreskin is readily retractile). Not everything that presents as a wart is HPV. The most common alternative diagnosis is molluscum contagiosum, but condyloma lata has been mistaken for genital warts in a child,\textsuperscript{177} and almost any kind of papular rash may present in the anogenital region. If there is doubt, the lesion may need to be biopsied, and tissue sent both for histology and for virological analysis.

Unless there is clear evidence to support vertical transmission in an infant, auto- or hetero-inoculation in a child or consenting sexual activity in an adolescent, consider referring the patient for a multidisciplinary assessment for possible sexual abuse. If in doubt, consult with a paediatrician with expertise in this area. If you do refer, leave other investigations for sexual abuse to the doctor to whom you are referring. A full assessment for possible sexual abuse will include an examination by a doctor trained in the medical assessment of sexual abuse, a full screen for other STIs following accepted forensic procedures, a social work assessment, and a diagnostic interview by an appropriately trained interviewer. In many cases, the result will be inconclusive.\textsuperscript{178}

More extensive medical investigations may be needed if there are oral lesions or respiratory symptoms in a young child, or if lesions appear to extend into the anus, urethra or vagina. These might include laryngoscopy, proctoscopy, cystoscopy, vaginoscopy or (in post-pubertal girls) a speculum examination and cervical smear.

Treatment

Anogenital warts will usually regress spontaneously. Infection may be multi-focal, and HPV DNA is almost certainly present in adjacent ‘normal’ tissue. At present, there is no evidence that treatment in childhood will reduce the (unproven) risk of later neoplasia. Treatment ‘can be difficult, prolonged and only marginally efficacious’\textsuperscript{133} and recurrence is common. For all these reasons, active treatment is not usually recommended. Treatment should be reserved for those with significant symptoms. There are many forms of treatment,\textsuperscript{166,179,180} but in young children with extensive lesions, laser or diathermy under general anaesthetic is probably the best option. Several case reports attest to the safety and efficacy of Podofilox gel (podophyllotoxin) or Imiquimod cream in children.\textsuperscript{181} However, there are no randomised controlled trials of therapy in childhood. The most common therapy for juvenile onset respiratory papillomatosis is laryngoscopy and surgical debulking with laser, sometimes in conjunction with adjuvant antiviral agents.\textsuperscript{182}

Follow-up

Follow the patient to ensure that the lesions regress, and see them again after 3 to 6 months to ensure that they have not recurred. In the case of vertical transmission, it is important to ensure that the mother receives appropriate follow-up of her own infection. If the patient is a sexually active adolescent, you should screen for other STIs and provide sexual health advice. In the case of sexual abuse, the patient should be followed to ensure that appropriate steps have been taken to ensure his or her ongoing safety and to provide support and counselling.

There is no evidence available to guide recommendations for long-term follow-up. It is reasonable to be concerned that children and adolescents with anogenital HPV infection may be at increased long-term risk of malignancy. Therefore, it would be reasonable to recommend early consultation by patients of either sex for anogenital or urethral symptoms. Routine cervical screening should follow the National Cervical Screening Guidelines.
References


71. McIntyre-Seltman K, Castle PE, et al. Smoking is a risk factor for cervical intraepithelial neoplasia grade 3 among oncogenic human papillomavirus DNA-positive women with equivocal or mildly abnormal cytology. Cancer Epidemiology, Biomarkers & Prevention, 2005 May;14(5):1165-70.


125. Cook C. About as comfortable as a stranger putting their finger up your nose: Speculation about the (extra)ordinary in gynaecological examinations. Culture, Health and Sexuality. In press.


CLINICAL PRESENTATIONS OF GENITAL HPV

- Penile pearly papules is not HPV
  - Penile pearly papules is a common benign condition often mistaken for genital warts.

- Multifocal pigmented VIN

- Penile warts

- Multifocal VIN

- Squamous cell carcinoma in situ of glans penis with early invasive carcinoma

- Vulval condyloma
Members of the Professional Advisory Board (PAB) of the Sexually Transmitted Infection Education Foundation 2012

**Sexual Health Physicians**
Dr Jane Morgan (Chairperson)
Dr Edward Coughlan
Dr Janet Say
Dr Nicky Perkins

**NZ Dermatological Society**
Dr Darian Rowan

**NZ Committee of the Royal Australian and New Zealand College of Obstetrics and Gynaecology**
Dr Ron Jones (Advisor)
Dr Anne Robertson (Chairperson, NZHPV Project)
Dr Richard Speed

**Paediatric Society of New Zealand**
Dr Lesley Voss

**NZ College of General Practitioners**
Dr Phil Jacobs

**Virology**
Dr Kitty Croxson

**Family Planning**
Dr Christine Roke

**Counselling**
Catherine Cook

**Nursing**
Claire Hurst
Georgina McPherson (NZHPV Project)
Jessie Crawford

**Patient Advocate**
Jo Patrick

**Project Co-ordinator**
Claire Hurst, PO Box 2437, Auckland
Tel: 09 433 6526  Fax: 09 360 2835  Email: info@hpv.org.nz
Members of the Professional Advisory Board (PAB) of the Sexually Transmitted Infection Education Foundation 2012

**Sexual Health Physicians**
Dr Jane Morgan (Chairperson, NZHF)
Dr Edward Coughlan
Dr Nicky Perkins
Dr Janet Say

**NZ Dermatological Society**
Dr Darian Rowan

**NZ Committee of the Royal Australian and New Zealand College of Obstetrics and Gynaecology**
Dr Ron Jones (Advisor)
Dr Anne Robertson (Chairperson, NZHPV Project)
Dr Richard Speed

**Paediatric Society of New Zealand**
Dr Lesley Voss
Dr Patrick Kelly

**NZ College of General Practitioners**
Dr Phil Jacobs

**Virology**
Dr Kitty Croxson

**Family Planning**
Dr Christine Roke

**Counselling**
Catherine Cook

**Nursing**
Claire Hurst
Georgina McPherson (NZHPV Project)
Jessie Crawford

**Patient Advocate**
Jo Patrick

**Project Co-ordinator**
Claire Hurst, PO Box 2437, Auckland
Tel: 09 433 6526 Fax: 09 360 2835 Email: info@hpv.org.nz

---

New Zealand Sexual Health Society Guideline Writing Group

**Sexual Health Physicians**
Dr Sunita Azariah
Dr Nicky Perkins
Dr Edward Coughlan
Dr Murray Reid
Dr Anne Robertson
Dr Heather Young
Dr Jane Kennedy

**Sexual Health Nurse Specialist**
Renee Edwards

**Consultation Group**

**NZ College of General Practitioners**
Dr Monique Huerta
Dr Bronwyn Campbell
Dr Andrew Miller
Dr Eileen Stables

**Clinical Microbiology and Infectious Diseases**
Dr Arlo Upton

**Pharmacist**
Sarah Fitt

**College of Midwives**
Karen Upton

**Nursing**
Pat Alexander – Clinical Nurse Manager of Well Women and Family Trust
Maria Kekus – Youth Health Nurse Practitioner
Celeste Gillmer – School Nurse Educator
Dianne Dawson – School Nurse Youth Heath Nurse Specialist
Diana Nicholson – Health Science School Nurse Youth Heath Nurse Specialist
Health West School Nurses Group

**Youth Consultation**
Auckland Peer Sexuality Support Program Students – for feedback on the Patient Information sheets

**Project Co-ordinator**
Suzanne Werder